Environmental Chemistry, Homework 1: Solution

Revision of basic concepts

1) Acid-base reactions: proton transfer

1.a. Exercises on Key Concepts

Definitions according to Brönsted-Lowry

1)
$$H_2CO_3 + H_2O < --> H_3O^+ + HCO_3^-$$

$$HCO_3^- + H_2O < --> H_3O^+ + CO_3^{2-}$$

Acid

Conjugate Base

2)
$$H_2O + SO_4^- < -> HSO_4^- + OH^-$$

$$H_2O + HSO_4^- < --> H_2SO_4 + OH^-$$

Base Conjugate Acid

Protolysis of water

1) A small fraction of water molecules dissociate to hydroxide ion (OH-) and hydronium ion (H_3O^+) which, even in low concentrations (10^{-7} M), are capable of conducting current.

2)
$$H_2O + H_2O < --> H_3O^+ + OH^-$$

Acide + Base <-> Conjugate Acid + Conjugate Base

 $K_w = [H_3O^+][OH^-] = 10^{-14}$ is called the ion product of water

Strength of an acid and a base

- 1) (a) Lactic acid ($K_a = 1.4 \times 10^{-4}$) X
 - (b) Propionic acid ($K_a = 1.4 \times 10^{-5}$) X
 - (c) Acetic acid ($K_a = 1.8 \times 10^{-5}$) X
 - (d) Pyruvic acid ($K_a = 3.2 \times 10^{-3}$) \checkmark

2)

$$K_w = K_a \times K_b$$

$$-\log K_w = -\log (K_a \times K_b)$$

$$14 = -\log K_a + - \log K_b$$
 (with pK_a = $-\log K_a$ and pK_b = $-\log K_b$)

$$pK_a + pK_b = 14$$

- (a) Lactic acid $pK_a = 3.85$ therefore $pK_b = 10.15$
- (b) Propionic acid $pK_a = 4.85$ therefore $pK_b = 9.15$
- (c) Acetic acid $pK_a = 4.74$ therefore $pK_b = 9.26$
- (d) Pyruvic acid $pK_a = 2.49$ therefore $pK_b = 11.51$

The higher the pK_a , the lower the pK_b , so the weaker the acid, the stronger its conjugate base.

Definition of pH

1) (a) pH = -In
$$[H_3O^+]$$
 X

(b) pH =
$$\log [H_3O^+]$$
 X

(c) pH =
$$\log (1/[H_3O^+]) \checkmark$$

(d) pH =
$$-\log (10^{-14}/[OH^-])$$
 \checkmark

(e) pH =
$$-\log ([H_3O^+]) \checkmark$$

2) pH = -
$$\log ([H_3O^+])$$
 and $[H_3O^+] = K_w/[OH^-]$

hence pH =
$$-\log (10^{-14}/[OH^{-}])$$
 we get $[OH^{-}] = 10^{-8}$ M

$$pH = -log (10^{-14}/10^{-8})$$

$$pH = 6$$

3) Weak acids and weak bases do not fully dissociate in solution.

The acid in the presence of water will dissociate according to the equation:

This gives :
$$K_a = \frac{[H_3O^+][A^-]}{[HA]} = \frac{x^2}{C_A - x}$$
 or $x = [H_3O^+]$

as the dissociation of the acid is weak, we can consider that x<<CA, so we can simplify by

$$K_a = \frac{[H_3 O^+][A^-]}{[HA]} = \frac{x^2}{C_A}$$

so
$$x = [H_3 O^+] = \sqrt{K_A C_A}$$

-log ([H₃O⁺]) = -log
$$(K_A C_A)^{\frac{1}{2}}$$

$$pH = -\frac{1}{2}logK_A - \frac{1}{2}logC_A$$

$$pH = \frac{1}{2}(pK_A - logC_A)$$

Using the same reasoning for the weak base, we obtain

$$x = [OH^{-}] = \sqrt{K_b C_B}$$

so
$$[H_3O^+] = \frac{K_W}{\sqrt{K_BC_B}}$$

pH = 14 +
$$\frac{1}{2} log K_b + \frac{1}{2} log C_B$$

pH = 14 +
$$\frac{1}{2}logK_{w} - \frac{1}{2}logK_{a} + \frac{1}{2}logC_{B}$$

$$pH = 7 - \frac{1}{2}logK_a + \frac{1}{2}logC_B$$

$$pH = 7 + \frac{1}{2}(pK_a + logC_B)$$

1.b. Calculating the pH of acid solutions

1) Hydrochloric acid is a strong acid so $[H_3O^+] = n_{HCI} V_{HCI} / V_{sol}$

$$[H_3O^+] = (1x10^{-3}x1) / 1,001$$

$$[H_3O^+] = 9.9 \times 10^{-4} M$$

$$pH = 3$$

2) These 3 acids are weak acids, so we use the relationship $pH = \frac{1}{2}(pK_A - logC_A)$

with
$$logC_A = log (10^{-2}) = -2$$

Lactic acid:
$$pH = (3.85 + 2) = 2.93$$

Pyruvic acid:
$$pH = (2.49 + 2) = 2.25$$

Acetic acid:
$$pH = (4.74 + 2) = 3.37$$

1.c. Calculating the pH of basic solutions

1) Sodium hydroxide, NaOH, is a strong base, completely dissociated into Na⁺ and OH⁻, so

$$pH = -\log\left(\frac{K_W}{[OH^-]}\right) = -\log\left(\frac{10^{-14}}{5 \times 10^{-3}}\right)$$

2) These 3 conjugated bases are weak (based on the K_b values calculated) above. We can write:

$$pH = 7 + \frac{1}{2}(pK_a + logC_B)$$

Lactic acid:
$$pH = 7 + (3.85 - 2) = 7.93$$

Pyruvic acid:
$$pH = 7 + (2.49 - 2) = 7.25$$

Acetic acid:
$$pH = 7 + (4.74 - 2) = 8.37$$

- 2) Oxidation-reduction reactions: electron transfer
- 2.a. Exercises on Key Concepts

Definition of a redox couple

1) A reductant is a chemical compound (molecule or ion) which is able to give up one or more electrons (e-). A reductant loses one or more electrons to become oxidized This is called a oxidation reaction.

An oxidant is therefore a chemical compound (molecule or ion) that is capable of acquiring one or more electron(s). An oxidant acquires one or more electrons and becomes reduced. This is called a reduction reaction.

2) Each redox couple is assigned a standard electrochemical potential E° (V) defined in relation to the couple H^+/H_2 (E° H_+/H_2 = 0.0V). The oxidizing power decreases with decreasing potential.

3)

Reactions	Ox1	Red1	Ox2	Red2
$Cu(s) + 2AgNO_3 \rightarrow Cu(NO_3)_2 + Ag(s)$	Ag⁺	Cu(0)	Cu ²⁺	Ag(0)
$3Cl_2 + 2Al(s) \rightarrow 6Cl^- + 2Al^{3+}$	Cl ₂ (0)	AI(0)	Al ³⁺	Cl ⁻

2.b. Equilibrating redox reactions

1)
$$NO_{2}^{-} + MnO_{4}^{-} + H_{3}O^{+} \longrightarrow NO_{3}^{-} + Mn^{2+} + H_{2}O$$

-Determination of the pairs involved in the reaction

$$MnO_4^{-}/Mn^{2+}$$
 et NO_3^{-}/NO_2^{-}

-Determination of oxidation numbers and half-reactions

 MnO_4^- : N.O. = +VII

 $Mn^{2+}: N.O. = +II$

This reaction requires 5e- and the charges are balanced by H+:

$$MnO_4^- + 5e^- + 8H^+ -> Mn^{2+} + 4H_2O$$
 eq (1)

 $NO_{3}: N.O. = +V$

 NO_2 : N.O. = +III

This reaction requires 2e- and the charges are balanced by H+:

$$NO_3 + 2e^- + 2H^+ -> NO_2 + H_2O$$
 eq (2)

-Electronic transfer equilibration: x2 for eq (1) and x5 for eq (2)

$$2 \text{ MnO}_4^- + 10 \text{ e}^- + 16 \text{ H}^+ -> 2 \text{ Mn}^{2+} + 8 \text{ H}_2\text{O}$$

$$5 \text{ NO}_{2} + 5 \text{ H}_{2}\text{O} -> 5 \text{ NO}_{3} + 10 \text{ e}^{-} + 10 \text{ H}^{+}$$

-Combination of the 2 equations

$$5 \text{ NO}_{2} + 2 \text{ MnO}_{4} + 6 \text{ H}^{+} -> 5 \text{ NO}_{3} + 2 \text{ Mn}^{2+} + 3 \text{ H}_{2}\text{O}$$

ou 5
$$NO_{2}^{-}$$
 + 2 MnO_{4}^{-} +6 $H_{3}O^{+}$ -> 5 NO_{3}^{-} + 2 Mn^{2+} + 9 $H_{2}O$

3) Precipitation/dissolution reactions

$$M_nX_m(s) <-> nM(aq) + mX(aq)$$

Ks = [M]ⁿ[X]^m and S =
$$\sqrt[n+m]{\frac{Ks}{n^n m^m}}$$

(a)
$$CaCO_3$$
 $Ks = 3.3*10^{-9} M^2$ $S = 5.75*10^{-5} M$

(b)
$$Mn(OH)_2$$
 $Ks = 2.0*10^{-13} M^3$ $S = 3.68*10^{-5} M$

(c)
$$Cu(OH)_2$$
 Ks =4.8*10⁻²⁰ M³ S = 2.28*10⁻⁷ M

(d) CdS
$$Ks = 1.0*10^{-27} M^2$$
 $S = 3.16*10^{-14} M$

CaCO₃ is the most soluble.